[b]

[a]
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin r \cos r}{1 + \cos^6 r} dr = 0,$$

$$\frac{\sin (r) \cos (r)}{1 + \cos^6 (r)} = -\sin (r \cos r)$$

$$\frac{1 + \cos^6 (r)}{1 + \cos^6 (r)} = \frac{-\sin (r \cos r)}{1 + \cos^6 (r)}$$

$$ODD, CONTINUOUS$$

ALL ITEMS WORTH (1)
EXCEPT AS INDICATED

[c]
$$\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\sin\theta\cos\theta}{\sqrt{1-\cos^4\theta}} d\theta$$

$$U = \cos^2\theta, 0$$

$$du = -2\cos\theta\sin\theta d\theta$$

$$-\frac{1}{2}du = \cos\theta\sin\theta d\theta$$

$$\theta = \frac{\pi}{3} \Rightarrow u = \frac{1}{4}$$

$$\theta = \frac{\pi}{2} \Rightarrow u = 0$$

$$\int_{\frac{\pi}{4}}^{0} -\frac{1}{2} \frac{1}{\sqrt{1-u^2}} du, 0$$

$$= -\frac{1}{2}\sin^2\theta = \frac{1}{4}$$

$$= -\frac{1}{2}\sin^2\theta = \frac{1}{4}$$

 $\int \frac{(2y^2 - 3\sqrt{y})^2}{6y^5} dy$ $= \int \frac{4y^4 - 12y^{\frac{5}{2}} + 9y}{6y^5} dy$ $= \int \left(\frac{2}{3}y^7 - 2y^{-\frac{5}{2}} + \frac{3}{2}y^{-4}\right) dy (1)$ $= \frac{2}{3} \ln|y| - 2\left(-\frac{2}{3}\right)y^{-\frac{3}{2}} + \frac{3}{2}\left(-\frac{1}{3}\right)y^{-3} + C$ $= \frac{2}{3} \ln|y| + \frac{4}{3}y^{-\frac{3}{2}} - \frac{1}{2}y^{-3} + C$

[d]
$$\int_{-\pi}^{\pi} \frac{t + \sin t}{\cos t} dt$$

$$DISCONTINUOUS © t = \pm \frac{\pi}{2},$$
FTC DOESN'T APPLY.

If
$$p(x) = \int_{x^2}^{5x} \tan^{-1} e^{4t} dt$$
, find $p'(x)$.

SCORE: ____/4 PTS

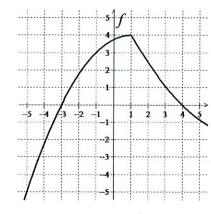
$$p(x) = \int_{x^{2}}^{0} tan^{-1}e^{4t}dt + \int_{0}^{5x} tan^{-1}e^{4t}dt$$

$$= -\int_{0}^{x^{2}} tan^{-1}e^{4t}dt + \int_{0}^{5x} tan^{-1}e^{4t}dt$$

$$= -\tan^{-1}e^{4x^{2}} \cdot 2x + \tan^{-1}e^{20x} \cdot 5$$

Let
$$g(x) = \int_{-\infty}^{\infty} f(t) dt$$
, where f is the function whose graph is shown on the right.

[a] Write "I UNDERSTAND THAT THE GRAPH SHOWS
$$f$$
, BUT THE QUESTIONS ASK ABOUT g ".



[b] Find
$$g'(-1)$$
. Explain your answer very briefly.

[c] Find all critical numbers of
$$g$$
. Explain your answer very briefly.

$$g'(x) = f(x) = 0$$
 0 $x = -3, 4$

[d] Find all intervals over which
$$g$$
 is both increasing and concave down at the same time. Explain your answer very briefly.

state the Fundamental Theorem of Calculus (both parts) and the Net Change Theorem.

IF
$$f$$
 is continuous on $[a,b]$

(1) IF $g(x) = \int_a^x f(t) dt$, then $g'(x) = f(x)$

(2) IF $F'(x) = f(x)$, then $\int_a^b f(t) dt = F(b) - F(a)$

IF F' is continuous on $[a,b]$

Then $\int_a^b F'(x) dx = F(b) - F(a)$

GRADEDBY ME

If $f(a)$ is the	he annual amount of weight Morgan gained (in kilograms per year) when she was a years old,	SCORE: /3 PTS
3 ()	years old,	5CORE75115
	14	
what is the m	eaning of the equation $\int f(x) dx = 16$?	
	12	
NOTES:	Your answer must use all three numbers from the equation, along with correct units.	
	Your answer should NOT use "a", "x", "f(x)", "integral", "antiderivative", "rate of chan	ge" or "derivative".
	Your answer should sound like normal spoken English.	

FROM AGE 12 YEARS OLD TO 14 YEARS OLD, MORGAN'S WEIGHT INCREASED 16 kg ALTOGETHER.

GRADED BY ME